Copied to
clipboard

G = C24.4F5order 320 = 26·5

2nd non-split extension by C24 of F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.4F5, (C2×C10)⋊8M4(2), (C23×C10).7C4, C23.51(C2×F5), C53(C24.4C4), Dic5.117(C2×D4), (C2×Dic5).264D4, C10.34(C2×M4(2)), C23.2F513C2, C222(C22.F5), (C22×Dic5).37C4, (C23×Dic5).13C2, C22.30(C22⋊F5), C22.100(C22×F5), Dic5.52(C22⋊C4), (C2×Dic5).360C23, (C22×Dic5).280C22, (C2×C5⋊C8)⋊3C22, (C2×C22.F5)⋊8C2, C2.39(C2×C22⋊F5), C10.39(C2×C22⋊C4), C2.12(C2×C22.F5), (C22×C10).74(C2×C4), (C2×C10).92(C22×C4), (C2×C10).63(C22⋊C4), (C2×Dic5).196(C2×C4), SmallGroup(320,1136)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C24.4F5
C1C5C10Dic5C2×Dic5C2×C5⋊C8C23.2F5 — C24.4F5
C5C2×C10 — C24.4F5
C1C22C24

Generators and relations for C24.4F5
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e5=1, f4=d, ab=ba, faf-1=ac=ca, ad=da, ae=ea, bc=cb, fbf-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e3 >

Subgroups: 602 in 190 conjugacy classes, 60 normal (16 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C8, C2×C4, C23, C23, C23, C10, C10, C10, C2×C8, M4(2), C22×C4, C24, Dic5, Dic5, C2×C10, C2×C10, C2×C10, C22⋊C8, C2×M4(2), C23×C4, C5⋊C8, C2×Dic5, C2×Dic5, C2×Dic5, C22×C10, C22×C10, C22×C10, C24.4C4, C2×C5⋊C8, C22.F5, C22×Dic5, C22×Dic5, C22×Dic5, C23×C10, C23.2F5, C2×C22.F5, C23×Dic5, C24.4F5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, M4(2), C22×C4, C2×D4, F5, C2×C22⋊C4, C2×M4(2), C2×F5, C24.4C4, C22.F5, C22⋊F5, C22×F5, C2×C22.F5, C2×C22⋊F5, C24.4F5

Smallest permutation representation of C24.4F5
On 80 points
Generators in S80
(2 59)(4 61)(6 63)(8 57)(9 26)(11 28)(13 30)(15 32)(17 37)(19 39)(21 33)(23 35)(42 55)(44 49)(46 51)(48 53)(66 80)(68 74)(70 76)(72 78)
(1 5)(3 7)(10 14)(12 16)(18 22)(20 24)(25 29)(27 31)(34 38)(36 40)(41 45)(43 47)(50 54)(52 56)(58 62)(60 64)(65 69)(67 71)(73 77)(75 79)
(1 58)(2 59)(3 60)(4 61)(5 62)(6 63)(7 64)(8 57)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)(17 37)(18 38)(19 39)(20 40)(21 33)(22 34)(23 35)(24 36)(41 54)(42 55)(43 56)(44 49)(45 50)(46 51)(47 52)(48 53)(65 79)(66 80)(67 73)(68 74)(69 75)(70 76)(71 77)(72 78)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)(65 69)(66 70)(67 71)(68 72)(73 77)(74 78)(75 79)(76 80)
(1 12 18 41 79)(2 42 13 80 19)(3 73 43 20 14)(4 21 74 15 44)(5 16 22 45 75)(6 46 9 76 23)(7 77 47 24 10)(8 17 78 11 48)(25 34 50 69 62)(26 70 35 63 51)(27 64 71 52 36)(28 53 57 37 72)(29 38 54 65 58)(30 66 39 59 55)(31 60 67 56 40)(32 49 61 33 68)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)

G:=sub<Sym(80)| (2,59)(4,61)(6,63)(8,57)(9,26)(11,28)(13,30)(15,32)(17,37)(19,39)(21,33)(23,35)(42,55)(44,49)(46,51)(48,53)(66,80)(68,74)(70,76)(72,78), (1,5)(3,7)(10,14)(12,16)(18,22)(20,24)(25,29)(27,31)(34,38)(36,40)(41,45)(43,47)(50,54)(52,56)(58,62)(60,64)(65,69)(67,71)(73,77)(75,79), (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,57)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(41,54)(42,55)(43,56)(44,49)(45,50)(46,51)(47,52)(48,53)(65,79)(66,80)(67,73)(68,74)(69,75)(70,76)(71,77)(72,78), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80), (1,12,18,41,79)(2,42,13,80,19)(3,73,43,20,14)(4,21,74,15,44)(5,16,22,45,75)(6,46,9,76,23)(7,77,47,24,10)(8,17,78,11,48)(25,34,50,69,62)(26,70,35,63,51)(27,64,71,52,36)(28,53,57,37,72)(29,38,54,65,58)(30,66,39,59,55)(31,60,67,56,40)(32,49,61,33,68), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)>;

G:=Group( (2,59)(4,61)(6,63)(8,57)(9,26)(11,28)(13,30)(15,32)(17,37)(19,39)(21,33)(23,35)(42,55)(44,49)(46,51)(48,53)(66,80)(68,74)(70,76)(72,78), (1,5)(3,7)(10,14)(12,16)(18,22)(20,24)(25,29)(27,31)(34,38)(36,40)(41,45)(43,47)(50,54)(52,56)(58,62)(60,64)(65,69)(67,71)(73,77)(75,79), (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,57)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(41,54)(42,55)(43,56)(44,49)(45,50)(46,51)(47,52)(48,53)(65,79)(66,80)(67,73)(68,74)(69,75)(70,76)(71,77)(72,78), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64)(65,69)(66,70)(67,71)(68,72)(73,77)(74,78)(75,79)(76,80), (1,12,18,41,79)(2,42,13,80,19)(3,73,43,20,14)(4,21,74,15,44)(5,16,22,45,75)(6,46,9,76,23)(7,77,47,24,10)(8,17,78,11,48)(25,34,50,69,62)(26,70,35,63,51)(27,64,71,52,36)(28,53,57,37,72)(29,38,54,65,58)(30,66,39,59,55)(31,60,67,56,40)(32,49,61,33,68), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80) );

G=PermutationGroup([[(2,59),(4,61),(6,63),(8,57),(9,26),(11,28),(13,30),(15,32),(17,37),(19,39),(21,33),(23,35),(42,55),(44,49),(46,51),(48,53),(66,80),(68,74),(70,76),(72,78)], [(1,5),(3,7),(10,14),(12,16),(18,22),(20,24),(25,29),(27,31),(34,38),(36,40),(41,45),(43,47),(50,54),(52,56),(58,62),(60,64),(65,69),(67,71),(73,77),(75,79)], [(1,58),(2,59),(3,60),(4,61),(5,62),(6,63),(7,64),(8,57),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25),(17,37),(18,38),(19,39),(20,40),(21,33),(22,34),(23,35),(24,36),(41,54),(42,55),(43,56),(44,49),(45,50),(46,51),(47,52),(48,53),(65,79),(66,80),(67,73),(68,74),(69,75),(70,76),(71,77),(72,78)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64),(65,69),(66,70),(67,71),(68,72),(73,77),(74,78),(75,79),(76,80)], [(1,12,18,41,79),(2,42,13,80,19),(3,73,43,20,14),(4,21,74,15,44),(5,16,22,45,75),(6,46,9,76,23),(7,77,47,24,10),(8,17,78,11,48),(25,34,50,69,62),(26,70,35,63,51),(27,64,71,52,36),(28,53,57,37,72),(29,38,54,65,58),(30,66,39,59,55),(31,60,67,56,40),(32,49,61,33,68)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)]])

44 conjugacy classes

class 1 2A2B2C2D···2I4A4B4C4D4E···4J 5 8A···8H10A···10O
order12222···244444···458···810···10
size11112···2555510···10420···204···4

44 irreducible representations

dim111111224444
type+++++++-+
imageC1C2C2C2C4C4D4M4(2)F5C2×F5C22.F5C22⋊F5
kernelC24.4F5C23.2F5C2×C22.F5C23×Dic5C22×Dic5C23×C10C2×Dic5C2×C10C24C23C22C22
# reps142162481384

Matrix representation of C24.4F5 in GL6(𝔽41)

100000
0400000
001000
000100
0000400
0000040
,
4000000
0400000
0040000
0004000
000010
000001
,
4000000
0400000
0040000
0004000
0000400
0000040
,
100000
010000
0040000
0004000
0000400
0000040
,
100000
010000
00344000
001000
000077
00003440
,
010000
4000000
000010
000001
0038300
0024300

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,34,1,0,0,0,0,40,0,0,0,0,0,0,0,7,34,0,0,0,0,7,40],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,0,0,38,24,0,0,0,0,3,3,0,0,1,0,0,0,0,0,0,1,0,0] >;

C24.4F5 in GAP, Magma, Sage, TeX

C_2^4._4F_5
% in TeX

G:=Group("C2^4.4F5");
// GroupNames label

G:=SmallGroup(320,1136);
// by ID

G=gap.SmallGroup(320,1136);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,253,758,136,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^5=1,f^4=d,a*b=b*a,f*a*f^-1=a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^3>;
// generators/relations

׿
×
𝔽